ISSN 1981-3708 Pesquisa

RESINAS COMPOSTAS: ALTERAÇÕES DIMENSIONAIS EM FUNÇÃO DA COMPOSIÇÃO E DO MÉTODO DE IRRADIAÇÃO DE LUZ

RESIN COMPOSITES: DIMENSIONAL CHANGES IN RELATION TO COMPOSITION AND POLYMERIZATION METHODS

Gersinei Carlos FREITAS¹; Isadora Carneiro Pereira MACHADO²; Amanda Pedrosa OLIVEIRA³; Amanda Vessoni Barbosa KASUYA⁴; Terezinha Jesus Esteves BARATA⁵

Doutor em Materiais Dentários, Professor Titular do Departamento de Reabilitação Oral da Faculdade de Odontologia, Universidade Federal de Goiás.

Cirurgiã-dentista pela Faculdade de Odontologia, Universidade Federal de Goiás.

Mestranda em Clínica Odontológica pelo Programa de Pós-graduação em Odontologia da Faculdade de Odontologia, Universidade Federal de Goiás

Doutora em Clínica Odontológica pelo Programa de Pós-graduação em Odontologia da Faculdade de Odontologia, Universidade Federal de Goiás. Doutora em Dentística, Professora Adjunta do Departamento de Reabilitação Oral da Faculdade de Odontologia, Universidade Federal de Goiás.

RESUMO

Objetivo: Avaliar e comparar a força de contração de polimerização de duas resinas compostas (microhíbrida e de preenchimento em bloco "bulk fill") utilizando dois métodos de polimerização (uniforme contínua "convencional" e pulso tardio). Material e método: Quarenta corpos de prova (CP) foram confeccionados (6x1x2mm), sendo 20 CP com a resina composta de preenchimento em bloco "bulk fill" x-tra fil (VOCO) e 20 CP com a resina micro-híbrida Filtek Z250 (3M ESPE). Para cada resina composta a ser testada metade dos corpos de prova (10 CP) foram fotopolimerizados pela técnica convencional [40s contínuos] e a outra metade (10 CP) com a técnica de irradiação pulso tardio [5s, seguida de 1 min de intervalo e mais 35s]. A fotopolimerização foi realizada com fonte de luz LED com 1250

mW/cm². A força de contração, em Newtons (N) foi considerada como o valor registrado pela máquina de ensaios, 2 min após o início da aplicação da luz no CP. Os dados obtidos foram submetidos à análise estatística descritiva, ANOVA a dois critérios e Tukey (P<0,05). Resultados: Diferenças estatisticamente significativas foram observadas para as resinas compostas testadas (P<0,001) e para os métodos de polimerização (P=0,001). Conclusões: A técnica de fotopolimerização convencional e a resina composta microhíbrida produziram menor força de contração de polimerização.

PALAVRAS-CHAVE: Materiais Dentários; Polimerização; Resinas Compostas.

INTRODUÇÃO

Ao longo de mais de 50 anos, a literatura Odontológica vem reportando um processo ininterrupto de aperfeiçoamento das propriedades das resinas compostas, com o intuito de obter o melhoramento do seu desempenho clínico^{1,2}. Todavia, a contração de polimerização ainda é considerada sua principal desvantagem³⁻⁵, uma vez que pode afetar à interface dente/restauração, ou seja, está relacionada à formação de *gap*⁵. Logo, as possíveis consequências clínicas da contração de polimerização incluem a microinfiltração a qual pode resultar na descoloração marginal, sensibilidade pós-operatória, injúrias pulpares, lesões cariosas secundárias e falhas do procedimento restaurador^{2,3,6-9}. Adicionalmente, a possibilidade de ocorrência de trincas ou fraturas das paredes de esmalte também são possíveis consequências clínicas da contração de polimerização^{2,3,6-9}.

Neste contexto, Tarle *et al.*¹⁰ (2012) afirmam que os avanços no desenvolvimento de resinas compostas devem incluir a redução da contração de polimerização, aliado a melhoria das suas

propriedades mecânicas e físicas. Além disso, a capacidade de liberação de íons remineralizantes, bem como seu efeito antimicrobiano deveriam ser características incluídas dentre os melhoramentos propostos para as resinas compostas¹º. Entretanto, não há ainda um material que seja considerado totalmente ideal, contudo os fabricantes investem em pesquisas e/ou estratégias que atuem na melhoria do desempenho e longevidade clínica das restaurações com resinas compostas².

Dentre as estratégias a serem aplicadas ao alcance dos cirurgiões-dentistas destacam-se: utilização de cimentos de ionômero de vidro como base, controle do fator C de configuração cavitária e inserção da resina composta por meio da técnica incremental (incrementos de 2 mm de espessura)^{2,5,11}. Não obstante há uma situação contraproducente, uma vez que se de um lado a técnica incremental traz como pontos positivos a adequada polimerização, menor fator C de configuração cavitária, redução volumétrica do material com consequente redução da tensão de contração^{2,5}. Por outro lado, aumentam o tempo clínico

dispendido no atendimento, assim o protocolo restaurador com resinas compostas de preenchimento em bloco (termo em inglês: *Bulk-fill*) simplificam o procedimento e diminuem o tempo clínico nos casos clínicos de cavidades profundas e amplas¹². Isto é possível, pois estas resinas permitem a inserção de incrementos de 4 mm de espessura, devido aos fotoiniciadores incorporados a sua composição, bem como sua translucidez que permite uma adicional penetração de luz, o que gera uma polimerização em maiores profundidades¹³,¹⁴.

Ainda deve-se ressaltar, o papel relevante das fontes de luz no processo de fotopolimerização das resinas compostas e consequentemente no sucesso clínico dos procedimentos restauradores^{2,15,16}. É importante destacar que três fatores são imperativos neste processo: contração de polimerização, aumento da temperatura intrapulpar e técnicas de modulação da fotopolimerização³. Estas técnicas objetivam reduzir as tensões advindas da contração de polimerização e, entre estas, as técnicas de polimerização convencional (uniforme contínua) e pulso tardio são comumente utilizadas na rotina clínica¹⁷. A técnica convencional consiste na emissão de luz com uma densidade de potência predeterminada por um período de tempo, isto ocasiona a rápida reação de polimerização, logo maior tensão na interface dente-restauração¹⁷. Por outro lado, a técnica de pulso tardio permite que a resina seja fotopolimerizada gradualmente, assim sendo com reduzida da contração de polimerização, contudo apresenta maior efetividade em cavidades de rasa ou média profundidade¹⁷.

Mediante o exposto, torna-se significativo analisar dois fatores que podem interferir no sucesso dos procedimentos restauradores: resina composta e técnica de fotopolimerização. Portanto, este estudo objetivou avaliar e comparar a forças de contração geradas durante a polimerização de duas resinas compostas (microhíbrida e preenchimento em bloco *Bulk fill*) fotopolimerizadas com duas técnicas de fotoativação (uniforme contínua "convencional" e "pulso tardio"). Como hipóteses nulas a serem testadas: (1) a resina composta microhíbrida teria os menores valores de força de contração de polimerização independentemente da técnica de fotoativação; (2) a técnica de fotoativação de "pulso tardio" apresenta os menores valores de força de contração de polimerização independentemente do tipo de resina composta testada.

MATERIAL E MÉTODO

Material e técnicas testados

No presente estudo duas resinas compostas em combinação com duas técnicas de fotoativação foram testadas como observado na Tabela 1.

Corpos de Prova

Quarenta corpos de prova (CP) foram confeccionados em matriz de aço inoxidável retangular ($6 \times 1 \times 2$ mm), sendo 20 CP para cada resina composta a ser testada, metade destes fotoativados por meio da técnica uniforme contínua "convencional" e a outra metade com a técnica de pulso tardio.

Avaliação da força de contração de polimerização

As forças de contração de polimerização foram registradas

em uma máquina de ensaios Universal (Instron 4411; Instron Testing Instruments, Canton, MA, USA). O ensaio foi realizado de acordo com a metodologia descrita por Pereira et al.18 (2007) utilizando o dispositivo de Bencor especialmente adaptados para este teste, no qual foram posicionadas paralelamente duas bases de aço retangulares (6 x 2 mm). Uma das bases foi conectada ao braço móvel da máquina de ensaios, por meio de uma célula de carga e a outra conectada ao braço fixo da máquina. Em seguida, o braço móvel foi movimentado até obtenção de contato sem pressão com o seu braço fixo. Esta posição foi zerada e o braço móvel foi movimentado até a obtenção de 1 mm de separação entre estes, com o intuito de padronização do chamado "espaço padrão", o qual apresentava 6 mm de largura, 1 mm de altura e 2 mm de profundidade. Neste espaço foi inserida a resina composta com uma espátula para resina de Titânio (Suprafill Millennium - Golgran, São Caetano do Sul, SP, Brasil), em incremento único e adaptada de acordo às superfícies externas das bases, constituindo o CP.

Logo em sequência, o teste foi iniciado com a fotoativação utilizando a fonte de luz de Diodo Emissor de Luz (LED) (EMIT-TER C, Schuster, Santa Maria, RS, Brasil) para ambas as técnicas de fotoativação. A cada 5 CP realizados a densidade de potência da fonte de luz era verificada com um radiômetro para luz de LED (SDI Limited, Bayswater, Victoria, Austrália). Este aparelho permite medir a intensidade de luz emitida em um comprimento de ondas entre 400 e 525 nanômetros e densidades de potências entre 0 e 2000 mW/cm². A ponteira transmissora do aparelho foi posicionada em todos os testes o mais próximo possível do CP, na sua face mais extensa (6 mm), de modo a ter uma espessura uniforme de material irradiado de 2 mm. Para os CP de ambas as resinas compostas a serem irradiadas com a técnica uniforme contínua "convencional" a densidade de potência foi de 1250mW/cm², por 40 segundos, sem interrupção e com 100% de intensidade luminosa. Enquanto, para os CP irradiados pela técnica de pulso tardio a densidade de potência foi idêntica (1250mW/cm²), por 5 segundos, seguido por um período de espera de 1 minuto (sem emissão de luz) e irradiação final por 35 segundos, sem interrupção e com 100% de intensidade luminosa.

Durante o teste de cada CP as forças de contração de polimerização, em Newtons (N) foram transmitidas, por meio de sua base superior conectada, à célula de carga gerando a deformação, a qual foi convertida como força na leitura do programa

Tabela 1 - Resinas Compostas e técnicas de fotoativação testadas

Resinas Compostas			Técnicas de Fotoativação	
Classificação	Dados comerciais	Composição*		
Microhíbrida	Filtek™ Z250, 3M ESPE, St. Paul, MN, USA	Bis-GMA, UDMA, Bis-EMA, Zircônia/ Sílica 60% em volume (0,01 a 3,5 micrômetros)	Uniforme contínua "convencional"	"Pulso tardio"
Preenchimento em bloco "Bulk fill"	<i>x-tra fil,</i> <i>VOCO GmbH,</i> Cuxhaven, Lower Saxony Germany	86% de materiais de preenchimento inorgânicos (corresp. a 70,1 Vol. %) numa matriz de me- tacrilato (Bis-GMA, UDMA, TEGDMA)		

^{*}De acordo com as informações do fabricante.

Rev Odontol Bras Central 2017; 26(77): 33-36 34

computacional da máquina de ensaios. O valor obtido foi registrado pela máquina de ensaio 2 minutos após o início da emissão da luz no CP.

Análise estatística

Os dados obtidos foram submetidos aos testes estatísticos descritivos (média e desvio padrão), distribuição de normalidade (Kolmogorov-Smirnov) e homogeneidade das variâncias (Levene), bem como análise de variância (ANOVA) a dois critérios (resinas e técnicas de fotoativação) e Teste de Tukey para comparações múltiplas, com nível de significância de 5% (P<0,05). As análises foram realizadas no programa IBM SPSS Statistics 21.0 for Windows (SSPS Inc., Chicago, IL, USA).

RESULTADOS

O teste Kolmogorov-Smirnov sugeriu uma distribuição de normalidade dos resultados (P>0,05). A tabela 2 apresenta média e desvio-padrão da força de contração de polimerização obtida no presente estudo.

Os resultados indicaram diferenças estatísticas significantes, para os fatores: técnica de fotopolimerização (P=0,001) e resina composta (P<0,001). Todavia, a interação entre os dois fatores analisados indicou que a diferença ou está na resina composta ou na técnica de fotoativação, não há influência direta de um fator sobre o outro (P=0,926).

Perante os resultados obtidos a hipótese nula (1) foi aceita, visto que a resina composta microhíbrida apresentou menores valores de contração de polimerização em comparação à resina composta de preenchimento em bloco, independentemente da técnica de fotoativação. Ao passo que a hipótese nula (2) foi rejeitada, já que a técnica de fotoativação de pulso tardio apresentou os maiores valores de contração de polimerização independentemente do tipo de resina composta testada.

DISCUSSÃO

No presente estudo a resina composta de preenchimento em bloco testada (*x-tra fil*, VOCO) apresentou maiores valores de contração de polimerização independentemente da técnica de fotoativação comparada à resina microhíbrida (*Filtek* Z250, 3M ESPE). Pode-se conjecturar que este resultado seja advindo de sua composição, uma vez que esta resina contem os monômeros UDMA e TEGDMA. Estes dois monômeros estão relacionados com a maior flexibilidade, mas também com o maior grau de

Tabela 2 - Média e desvio padrão da força de contração (N) para a resina composta e técnicas de fotoativação testadas

	Força de Contração de polimerização		
	Média (N) ± desvio-padrão		
	Técnica de fotoativação		
Resina Composta	Uniforme contínua "convencional"	Pulso tardio	
Filtek Z250 (3M ESPE)	1,26±0,05 ^{A,a}	1,34±0,06 ^{A,b}	
x-tra fil (VOCO)	1,45±0,05 ^{B,a}	1,51±0,05 ^{B,b}	

Testes estatísticos: ANOVA a dois critérios e Tukey (P<0,05)

Letras maiúsculas comparam na mesma técnica de fotoativação as duas resinas compostas testadas (colunas).

Letras minúsculas comparam na mesma resina composta as duas técnicas de fotoativação (linhas). conversão, devido à mobilidade dos monômeros e dos radicais livres da cadeia polimérica¹⁹. Isto ocorre porque o grau de conversão de polimerização aumenta na seguinte ordem Bis-GMA < Bis-EMA < UDMA < TEGDMA em estudo realizado em monômeros puros²⁰. Asmussem e Peutzfeldt¹⁹ (1988) já reportavam em seu estudo clássico que o monômero UDMA apresenta menor viscosidade e maior flexibilidade do que o Bis-GMA, assim podendo diminuir a rigidez da resina composta.

Vale ainda ressaltar o estudo de Han e Park²¹ (2017) que comparando resinas de preenchimento em bloco do tipo "flow" e de base reportaram que a "flow" apresentou maior contração de polimerização em restaurações Classe II do que as resinas de preenchimento em bloco para base. No presente estudo a comparação foi realizada entre resina microhíbrida (*Filtek*™ *Z250*) e a resina de preenchimento em bloco de base (x-tra fil™, VOCO), com maior força de contração para a última.

Em termos de desempenho clínico van Dijken e Pallesen²² (2016) observaram após 5 anos de acompanhamento, um comportamento aceitável e similar entre as restaurações Classe I e II realizadas pelas técnicas incrementais de 4 mm utilizando resina composta de preenchimento em bloco e de 2 mm com resina nano-híbrida. Todavia, Benetti *et al.*¹² (2015) alertam que a utilização de resinas compostas de preenchimento em bloco em cavidades profundas e largas, apesar de otimizar o tempo clínico, ou seja, serem clinicamente interessantes, apresentam maiores falhas "gaps" na interface dente/restauração do que o observado em resinas compostas convencionais.

Quanto às técnicas de fotoativação testadas, o presente estudo observou que a técnica uniforme contínua (convencional) independente do tipo da resina composta apresentou menores valores de contração de polimerização. Em estudo clínico randomizado e duplo-cego Chan *et al.*²³ (2008) reportaram situação oposta, visto que a técnica de fotoativação (convencional e pulso tardio) não influenciou na avaliação do desempenho clínico, sensibilidade pós-operatória e integridade marginal de restaurações Classe I e II. Paralelamente, deve-se destacar que o tipo de tecnologia das fontes de luz LED *monowave* e *polywave* não influenciou na profundidade de polimerização da resina composta de preenchimento em bloco²⁴.

Diante da literatura pertinente e resultados obtidos no presente trabalho observa-se que são necessários mais estudos que avaliem todas as propriedades mecânicas e físicas das resinas compostas de preenchimento em bloco "bulk fill".

CONCLUSÕES

- a) A resina composta microhíbrida apresentou os menores valores de contração de polimerização em comparação à resina composta de preenchimento em bloco, independentemente da técnica de fotoativação testada.
- b) A técnica de fotoativação de pulso tardio apresentou os maiores valores de contração de polimerização independentemente do tipo de resina composta testada.

REFERÊNCIAS

- 01. Bowen RL. Use of epoxy resins in restorative materials. J Dent Res. 1956; 35(3): 360-9.
- 02. Ferracane JL. Resin composite--state of the art. Dent Mater. 2011; 27(1): 29-38.

- 03. Rueggeberg FA. State-of-the-art: dental photocuring--a review. Dent Mater. 2011; 27(1): 39-52.
- 04. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012; 28(1): 87-101.
- 05. Kaisarly D, Gezawi ME. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology. 2016; 104(3): 257-70.
- 06. Barros GK, Aguiar FH, Santos AJ, Lovadino JR. Effect of different intensity light curing modes on microleakage of two resin composite restorations. Oper Dent. 2003; 28(5): 642-6.
- 07. Al-Harbi F, Kaisarly D, Michna A, ArRejaie A, Bader D, El Gezawi M. Cervical interfacial bonding effectiveness of class II bulk versus incremental fill resin composite restorations. Oper Dent. 2015; 40(6): 622–35.
- 08. Al-Harbi F, Kaisarly D, Bader D, El Gezawi M. Marginal Integrity of Bulk Versus Incremental Fill Class II Composite Restorations. Oper Dent. 2016; 41(2): 146-56.
- 09. Behery H, El-Mowafy O, El-Badrawy W, Saleh B, Nabih S. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins. J Esthet Restor Dent. 2016; 28(2): 122-30.
- Tarle Z., Marovic D, Panduric V. Contemporary concepts on composite materials. Medical Sciences. 2012; 38: 23-38.
- 11. Karaman E, Ozgunaltay G. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities. Oper Dent. 2014; 39(3): 325-31.
- Benetti AR, Havndrup-Pedersen C, Honoré D, Pedersen MK, Pallesen U. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015; 40(2): 190-200.
- 13. Fleming GJ, Awan M, Cooper PR, Sloan AJ. The potential of a resincomposite to be cured to a 4mm depth. Dent Mater. 2008; 24(4): 522-9.

- 14. Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012; 28(5): 521-8.
- 15. Price RB, Ferracane JL, Shortall AC. Light-Curing Units: A Review of What We Need to Know. J Dent Res. 2015; 94(9): 1179-86.
- 16. Alkhudhairy FI. The effect of curing intensity on mechanical properties of different bulk-fill composite resins. Clin Cosmet Investig Dent. 2017; 23(9): 1-6.
- Franco EB, Lopes LG. Conceitos atuais na polimerização de sistemas restauradores resinosos. Bio Odonto. Revista Odontológica. 2003; 1(2): 10-59.
- 18. Pereira RA, Araujo PA, Castañeda-Espinosa JC, Mondelli RFL. Comparative analysis of the shrinkage stress of composite resins. J Appl Oral Sci. 2008; 16(1): 30-34.
- 19. Asmussen E, Peutzfeldt A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1988; 14(1): 51-6.
- 20. Sideridou I, Tserki V,Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-baseddental resins. Biomaterials. 2002; 23(8): 1819-29.
- 21. Han SH, Park SH. Comparison of Internal Adaptation in Class II Bulk-fill Composite Restorations Using Micro-CT. Oper Dent. 2017; 42(2): 203-14.
- 22. Dijken JWV, Pallesen U. Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study. J Dent. 2016; 51: 29-35.
- 23. Chan DC, Browning WD, Frazier KB, Brackett MG. Clinical evaluation of the soft-start (pulse-delay) polymerization technique in Class I and II composite restorations. Oper Dent. 2008; 33(3): 265-71.
- 24. Menees TS, Lin CP, Kojic DD, Burgess JO, Lawson NC. Depth of cure of bulk fill composites with monowave and polywave curing lights. Am J Dent. 2015; 28(6): 357-61

ABSTRACT

Objective: Evaluating and comparing the polymerization contraction force of two composite resins (microhybrid and bulk fill) using two different methods of polymerization (conventional continuous uniform and late pulse). Material and methods: 40 specimens (CP) were made (6x1x2mm). 20 CP were made with the bulk fill composite resin *x-tra fil* (VOCO) and 20 CP with the *FiltekZ250* (3M ESPE) microhybrid resin. For each composite resin to be tested half of the specimens (10 CP) was photopolymerized by the conventional technique [40s continuous] and the other half (10 CP) by the late pulse irradiation technique [5s, followed by 1 min interval, and 35s]. The photopolymerization was performed with a 1250 mW/cm² LED light source. The force

of contraction, in Newtons (N) was considered as the value recorded by the test machine, 2 min after the beginning of the application of the light in the CP. Data were submitted to descriptive statistical analysis, ANOVA at two criteria, and Tukey (P <0.05). Results: Statistically significant differences were observed for the composite resins tested (P <0.001) and for the polymerization methods (P = 0.001). Conclusion: The conventional photopolymerization technique and the microhybrid composite resin produced a smaller polymerization contraction force.

KEYWORDS: Dental Materials; Polymerization; Composite Resins.

AUTOR PARA CORRESPONDÊNCIA

Gersinei Carlos Freitas

Faculdade de Odontologia, Universidade Federal de Goiás, Av. Primeira Avenida, s/n - Setor Leste Universitário,

Goiânia, GO, Brasil, Cep.: 74605-020

Número de telefone: +55 (62) 32096325 Número de fax: +55 (62) 3209-6060

Endereço eletrônico: gersineifreitas@yahoo.com.br